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Abstract— Reinforcement learning has enabled significant
progress in complex domains such as coordinating and navi-
gating multiple quadrotors. However, even well-trained policies
remain vulnerable to collisions in obstacle-rich environments.
Addressing these infrequent but critical safety failures through
retraining or fine-tuning is costly and risks degrading previously
learned skills. Inspired by activation steering in large language
models and latent editing in computer vision, we introduce a
framework for inference-time Latent Activation Editing (LAE)
that refines the behavior of pre-trained policies without modi-
fying their weights or architecture. The framework operates
in two stages: (i) an online classifier monitors intermediate
activations to detect states associated with undesired behaviors,
and (ii) an activation editing module that selectively modifies
flagged activations to shift the policy towards safer regimes.
In this work, we focus on improving safety in multi-quadrotor
navigation. We hypothesize that amplifying a policy’s internal
perception of risk can induce safer behaviors. We instantiate
this idea through a latent collision world model trained to pre-
dict future pre-collision activations, thereby prompting earlier
and more cautious avoidance responses. Extensive simulations
and real-world Crazyflie experiments demonstrate that LAE
achieves statistically significant reduction in collisions (nearly
90% fewer cumulative collisions compared to the unedited base-
line) and substantially increases the fraction of collision-free
trajectories, while preserving task completion. More broadly,
our results establish LAE as a lightweight paradigm, feasible on
resource-constrained hardware, for post-deployment refinement
of learned robot policies.

I. INTRODUCTION

Advances in robot learning have significantly pushed the
boundaries of autonomy, including multi robot systems,
driven primarily by both reinforcement learning (RL) and
imitation learning [1]–[4]. Despite these successes, most
learned models function as black boxes with limited inter-
pretability and explainability [5]. Enhancing specific behav-
iors or addressing edge cases typically demands expensive re-
training or fine-tuning, involving substantial real-world data
or large amounts of simulated interactions [6]. Furthermore,
retraining carries the risk of catastrophic forgetting, where
policies lose previously learned skills when adapting to new
or updated task specifications [7, 8]. Beyond forgetting, a
broader limitation arises from the asymptotic performance
plateaus often observed in RL policies. Once a policy
achieves strong average performance, further optimization
usually yields only marginal gains [9, 10]. Closing this final
remaining performance gap (e.g., from 95% to 99.9%) is
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Fig. 1: (a) Conceptual overview of LAE. An online behavior
classifier monitors the intermediate latents activation Z of a frozen
RL policy. Safe activations pass unchanged, while unsafe ones
are replaced by edited surrogate activation Z′ generated by the
activation editing module, without modifying policy weights. (b)
Real-world quadrotor navigation illustrating LAE behavior.
Without LAE, the RL policy collides with an obstacle. With LAE,
the trajectory matches the base policy until the first unsafe flag,
after which successive latent edits steer the quadrotor away from
the unsafe zone, resulting in reaching the goal safely.

essential for robust real-world deployment [10]. These chal-
lenges motivate the need for methods that target refinement
of specific policy behaviors, without incurring the costs and
risks of full re-optimization.

Recent advances in natural language processing and com-
puter vision have shown that the behavior of learned models
can be modified at inference time without retraining [11]–
[15]. Activation steering and representation engineering al-
low precise, inference-time interventions in large language
models (LLMs) to guide outputs towards desired character-
istics. Latent space editing in generative and diffusion models
enables fine-grained control over generated content. The
application of these ideas to robotics remains unexplored,
primarily due to challenges associated with real-world inter-
actions compared to text or static vision outputs.

Inspired by these advances, we propose a framework
for altering the behavior of learned robot policies at in-
ference time. Specifically, we focus on the problem of
multi-quadrotor navigation in obstacle-rich environments,
leveraging a pre-trained RL policy [2]. While this policy
achieves strong overall performance, it continues to struggle
in certain edge cases and more challenging scenarios. Further
retraining or architectural changes do not alleviate these
failures, underscoring the need for alternative approaches [2].

We investigate whether targeted latent activation editing
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(LAE) (Figure 1) during inference can enhance safety, quan-
tified through collision avoidance, without costly retraining
or fine-tuning. We define LAE as the process of modifying
hidden activations of a network during inference, without
altering its trained weights. By intervening directly in the
latent space, LAE temporarily adjusts the policy’s internal
representations to steer behavior along desired axes, such
as safety (fewer collisions) in cluttered environments. Our
key insight is that LAE is a promising mechanism to reduce
undesirable behaviors or enhance specific desired behaviors
in pre-trained models. The specific latent dimensions chosen
for editing and the underlying editing logic vary depending
on the behavior to be influenced.

LAE (Figure 1) operates in two stages. First, we identify
undesired states by passing the selected intermediate latent
activations through an online behavior classifier. Second, we
perform targeted editing of these flagged latent activations
using a principled strategy. To promote safer behavior, we
hypothesize that artificially amplifying the robot’s internal
perception of environmental risk can trigger earlier and more
cautious maneuvers, thereby improving collision avoidance.
To realize this idea, we propose a latent collision world
model (LCWM), an action-free latent world model [16]–
[18] that predicts how latent activations evolve along tra-
jectories leading to collisions, using the current activation
together with a short history of past activations (Sec. IV-C).
Our experiments show that among multiple baseline editing
strategies, LCWM is the most effective, consistently yielding
statistically superior safety performance across extensive
evaluations. Finally, we demonstrate the real-world feasibil-
ity and effectiveness of our approach through deployment
on Crazyflie quadrotors, establishing LAE as a practical and
effective tool for enhancing the safety of pre-trained RL-
based multirobot navigation policies.

Our key contributions are as follows:
• We present LAE, a novel plug-in framework that steers

pre-trained policies by modifying intermediate activa-
tions at inference time, enabling targeted refinement
of specific behaviors. This is the first activation-space
intervention demonstrated on learned robot policies.

• We instantiate LAE on the task of navigating multiple
quadrotors in cluttered environments, focusing on im-
proving the collision avoidance behavior of a pretrained
RL policy.

• We demonstrate the efficacy of LAE through large-scale
simulation studies and real-world quadrotor experi-
ments, achieving statistically significant safety improve-
ments while remaining feasible on highly resource-
constrained robots.

• Ablation studies show that effective latent editing must
preserve activations relating to the robot’s own dynam-
ics to avoid dynamically infeasible behaviors.

II. RELATED WORK

A. Latent Space Editing: Altering Learned Model Behavior
Neural networks learn semantically structured internal

representations that can be located and modified. Early work

in natural language processing showed linear regularities and
biases in word embeddings and even a “sentiment neuron”
emerging under next-token training [19, 20]. In vision, self-
supervised models exhibit emergent semantics such as seg-
mentation and depth [21], motivating linear probes [22] and
concept directions [23] to identify editable features. Building
on this structure, latent-space editing techniques in vision
successfully steer attributes by moving along interpretable
directions in generative models [14, 24] and diffusion-based
guidance [15, 25]. In LLMs, behavior can be steered via (i)
prompt based methods [26], (ii) decoding-time control [27],
(iii) weight-level knowledge editing [28], or (iv) activation-
space interventions that directly modify hidden activations
during inference, such as activation addition and represen-
tation engineering [11]–[13]. Complementing these editing
methods, representation factorization shows that activations
can be decomposed into sparse, interpretable features: clas-
sical dictionary learning and sparse coding provide the
foundation [29], and modern sparse autoencoders recover
monosemantic features that enable causal ablations and steer-
ing [13, 30, 31]. Here, we present the first application of
ideas from activation interventions to robotics.

B. Latent Representations for Safe Reinforcement Learning.

Recent work has explored latent representations to im-
prove robot safety in reinforcement learning. Ls3 [32]
constructs latent safe sets to constrain exploration during
training. LSPC [33] uses conditional variational autoencoders
(VAEs) to enforce offline latent constraints. SLAC [34]
augments latent actor-critic models with a safety critic for
cost-constrained training, and Latent Safety Filters [35] apply
reachability analysis in learned latent spaces to avoid unsafe
actions. These approaches enforce safety through training-
time constraints/modified architectures; we intervene directly
at inference by editing activations of a frozen policy.

C. Safe Multi-Quadrotor Navigation

Safety for multi-quadrotors has been pursued via model-
based methods like (i) real-time planning / nonlinear model
predictive control (NMPC) and (ii) control barrier functions
(CBFs). Distributed NMPC exchanges neighbors’ predicted
trajectories at each control step and solves a constrained
NMPC locally. This introduces communication delays and
solver costs that grow with neighborhood size, horizon
length, and active constraints, while assuming low-latency
neighbor state information and an obstacle model [36].
Decentralized planners such as EGO-swarm [37] achieve
millisecond-level onboard replanning via a broadcast/chain
network and local mapping, but would require nontrivial
adaptation to interface with a learned policy. CBF filters
solve an online quadratic program (QP) to enforce forward
invariance; the seminal multi-robot CBF [38] and graph CBF
variants [39] provide guarantees but add a runtime opti-
mization layer, rely on accurate ego/neighbor/obstacle states,
and, when paired with RL, typically require a change of the
policy architecture. Moreover, per-agent QPs and neighbor
exchanges become a bottleneck as team size or constraints



grow. In contrast, LAE is model-free and improves safety
without retraining, architectural changes, or limits on the
number of robots or environment clutter.

III. PROBLEM FORMULATION

We consider a decentralized multi-quadrotor navigation
task in an obstacle-rich environment. Each robot i receives
local observations Ot,i (Sec. V-B) at time t consisting of its
own state Ot,sel f , the relative states of its nearest neighbors
Ot,neigh, and a signed distance field encoding of nearby
obstacles Ot,obst (Figure 2). A pre-trained RL policy πφ

(specifically, the policy from [2]) maps observations to rotor
thrusts, at,i = πφ (Ot,i), enabling each robot to navigate to its
goal while avoiding collisions. Although πφ achieves strong
overall performance, there is room for improvement in the
collision rate.

Our objective is to reduce collisions in πφ without modi-
fying its weights or architecture, while maintaining its goal-
reaching behavior. Let Zt ∈Rd denote an intermediate latent
representation of the policy at time t where d is the latent
dimension. We seek an inference-time transformation Z′t =
Eθ (Zt) ∈ Rd that selectively replaces unsafe activations Zt
with edited surrogates Z′t , such that the resulting actions com-
puted by the original policy with its intermediate latent Zt
substituted by Z′t lead to reduced collisions while preserving
goal-reaching performance.

IV. METHODOLOGY

We propose an inference-time framework to modulate the
behavior of a pre-trained mulit-quadrotor RL policy without
altering its weights. As shown in (Figure 2), at each timestep
we extract the latent activation Zt from an intermediate
encoder layer of the policy. This latent is evaluated by a
behavior classifier; if it is predicted to correspond to a safe
state, the policy continues unaltered. If it is predicted to be
unsafe, it is replaced by an edited version Z′t generated by
the latent editing module, which is then forwarded to the
downstream layers of the frozen RL policy. The policy’s
outputs can thus be selectively steered toward safer behav-
iors while retaining the original architecture and weights.
The overall method consists of three components: dataset
collection, behavior classifier, and latent activation editing.

A. Dataset Collection

To construct the dataset, we roll out the trained policy
in the QuadSwarm simulator [40]. At each policy step,
we record only the intermediate latent activation Zt ∈ Rd ,
together with the trajectory index τ and time index t. For
each trajectory τ (τ = 1, . . . ,K) of length T , we mark all
collision time indices tc in the set C (τ). Because collision
times are precisely observable, we use a time-to-collision
heuristic with horizon H to obtain safety labels as

Y (τ)
t =

{
unsafe if ∃ tc ∈ C (τ) with 0≤ tc− t ≤ H,

safe otherwise.
(1)

Fig. 2: Overview of LAE integrated on a pre-trained multi-quadrotor
navigation policy. (a) RL policy architecture: observations are
encoded and fused via multi-head attention to produce intermediate
latent activations (Z1, Z2), which serve as candidates for Zt . (b)
editing pipeline: a behavior classifier evaluates latent activation Zt
and forwards it unchanged if safe, or routes it to the editing module
if unsafe. The module maintains a short history buffer and, once
filled, invokes the LCWM to generate a surrogate Z′t that replaces
the unsafe latent activation Zt .

We label a latent unsafe if it lies within H steps of any logged
collision, and safe otherwise. This results in labeled dataset

D =
K⋃

τ=1

{(Z(τ)
t , Y (τ)

t )}T−1
t=0 , Z(τ)

t ∈Rd , Y (τ)
t ∈{safe,unsafe}

(2)
which is used to train the behavior classifier and to construct
sequence data for training the LAE (LCWM) module.

B. Behavior Classifier

The behavior classifier Bw is a neural network trained
with supervised learning on D to detect unsafe activations.
It implements a mapping

Bw : Zt →{safe,unsafe}, (3)

and we denote its prediction by Ŷt = Bw(Zt). We use a multi-
layer perceptron with batch normalization, ReLU activations,
and dropout. At inference, if Ŷt = safe the policy continues
normally, i.e., Z′t = Zt . If Ŷt = unsafe, the latent activation is
passed to the editing module. Although we focus on collision
avoidance behavior, the labeling scheme is flexible; we will
explore applying the same machinery to other behavioral
dimensions by re-labeling D in future work.

C. Latent Activation Editing (LAE)

The editing module Eθ realizes our hypothesis that ar-
tificially amplifying the policy’s internal perception of risk
can induce earlier and safer avoidance maneuvers. To put



this into practice, we need a principled way to synthesize
risk-amplified latent activations consistent with the policy’s
latent evolution, which in turn motivates learning a model
capable of predicting near-future latent activations. A world
model typically refers to a learned predictor of environment
dynamics, approximating the transition function f : (st ,at) 7→
st+1 or, in latent form, f : (Zt ,at) 7→ Zt+1, and has been
widely studied for planning and imagination in model-
based RL [16]–[18]. Latent world models aim to capture
the transition dynamics of the environment in the latent
space. However, in the multi-quadrotor navigation domain,
modeling the full latent evolution proved infeasible due to
partial observability, the coexistence of static and dynamic
obstacles, and highly non-stationary latent dynamics.

To address these challenges, we introduce a latent collision
world model (LCWM) that focuses exclusively on latent
transitions leading to collisions. Whereas conventional world
models first encode observations and condition on actions,
our policy already produces latent representations, allowing
us to bypass the encoder and operate directly on these
activations. Unlike action-conditioned world models, LCWM
leverages short histories of latents to capture the relevant
latent evolution without explicit actions. Similar “action-
free” latent world models have recently been proposed [41],
showing that meaningful transition structure can be inferred
without ground-truth actions. To this end, we train LCWM
that predicts future latents along trajectories leading to colli-
sions, using only a short history of past activations, thereby
operationalizing our safety hypothesis.

Dataset Preparation for LCWM. We train LCWM using
only collision-bearing trajectories (those with |C (τ)|> 0, Sec.
IV-A). For each trajectory τ and collision time tc ∈ C (τ),
we consider the pre-collision window [ tc−H, tc ]. For every
index t in this window, we form an n-step history buffer of
latent activations Zh = [Zt−n, . . . ,Zt ]∈Rd×n, where n denotes
the buffer length. To avoid predicting beyond the collision
instant, we clamp the forecast index to t⋆ = min(t +m, tc),
where where m defines the number of steps to predict into
the future. Each Zh is then paired with the target Zt⋆ , where
Zt+m is latent activation m steps ahead of Zt , and Ztc is latent
activation at the time of collision. The LCWM is trained by
minimizing the objective in Equation 4.

L (θ) = ∑
∥∥Eθ (Zh)−Zt⋆

∥∥2
2. (4)

Model. We primarily implement Eθ , the LCWM, as a
gated recurrent unit (GRU). Given input sequence Zh, the
GRU evolves hidden states hi as:

hi = GRU(hi−1,Zi), Z′t =Wht +b, (5)

where i = t − n, . . . , t and Z′t is the predicted future latent.
During inference, when Bw flags Zt as unsafe and a buffer of
length n is available, the GRU predicts Z′t , which replaces Zt
in the forward pass. If the classifier outputs safe, the buffer is
reset. We also implemented LCWM with a transformer-based
predictor (Table I), but the GRU variant provided slightly
better empirical performance in our setting.

Algorithm 1 Inference-time LAE

1: Predict Ŷt ← Bw(Zt)
2: if Ŷt = safe then
3: Forward latent activation, Zt ; reset history buffer
4: else
5: Append Zt to history buffer
6: if buffer length is n then
7: Z′t ← Eθ (Zh)
8: Forward new latent activation, (Z′t )
9: end if

10: end if

Inference Loop The overall procedure is summarized in
Algorithm 1. At each step, the Zt is classified and either
passed through or edited depending on predicted safety.

While demonstrated for collision avoidance, the frame-
work is general: expert labeling defines the axis of inter-
vention, the classifier acts as a representation reader, and the
editor serves as a representation controller. Thus, our method
can extend beyond safety to modulate other behaviors of pre-
trained robot policies.

V. EXPERIMENTS

A. Experimental Setup

We evaluate our LAE pipeline through a combination
of simulation experiments and real world deployment. In
simulation, we use the QuadSwarm simulator [40] with 8
quadrotors navigating a 10× 10× 10 m room containing
static obstacles (20% density, 0.6 m diameter). To ensure fair
comparisons, we modified the simulator to be deterministic,
such that identical initializations yield identical trajectories.
This prevents stochastic variation and allows improvements
to be attributed directly to editing. In the default setting,
major sources of stochasticity include motor & sensor noise
in QuadSwarm [40] and action sampling in Sample Fac-
tory [42]. These components are important during training
to promote policy robustness and sim-to-real transfer, but
for evaluation we fix these sources to obtain reproducible
comparisons (for further details see [40, 42]). Unless other-
wise noted (Fig. 4), all simulation experiments are conducted
in the deterministic simulator setting. We construct a set
of 2,600 environment configurations where the base policy
collides at least once, and replay each configuration with
and without LAE for evaluation. The behavior classifier
Bw achieves high accuracy (overall ∼98%, and 99.3% on
safe trajectories), and with the additional history-buffer re-
quirement, LAE rarely activates on already safe trajectories,
where its performance is effectively identical to the baseline
RL policy. Evaluation is therefore restricted to these 2600
configurations to avoid inflating results with already safe
scenarios. Performance is assessed using three metrics: total
collisions, the cumulative number of total collisions across
all 2600 trajectories; zero collision trajectories, the number
of trajectories completed without any collision; and average
success rate, the fraction of robots that reach their goals
without collision, capturing task completion alongside safety.



Fig. 3: Quantitative comparison of the base RL policy with and
without LAE on 2,600 environmental configurations. We report total
collisions, zero collision trajectories, and average success rate. LAE
implementation uses LCWM (GRU).

The remainder of this section is organized as follows. Sec. V-
B describes the architecture and pre-training of the base RL
policy. Sec. V-C presents the core comparison between the
base RL policy and our best LAE strategy - LCWM. Sec. V-
D evaluates alternative baseline LAE strategies. Sec. V-E in-
vestigates two key design questions: which latent components
should be edited and when editing should be triggered (i.e.,
how many steps before a collision). Sec. V-F shows real-
world deployment on Crazyflie quadrotors.

B. Base RL Policy (Architecture and Pre-training)

We adopt the end-to-end, decentralized RL policy of
Huang et al. [2] as the base RL controller for the multi-
quadrotor navigation task. Each robot (Figure 2) observes
its own state and goal (Ot,sel f ), the relative positions and
velocities of its two nearest neighbors (Ot,neigh), and a com-
pact 3×3 signed-distance field encoding of nearby obstacles
(Ot,obst ). These observations are encoded by three two-layer
MLPs (self, neighbor, obstacle), with neighbor and obstacle
embeddings fused through a multi-head attention module.
The concatenated embedding produces a latent representation
Z1 = [eself,eneigh,eobst] ∈ Rd , which is then passed through
downstream MLP layers to yield another latent Z2 ∈ Rd .
Finally, Z2 is fed into the actor’s action parameterization head
to output four normalized rotor thrusts. In our experiments,
we instantiate Zt as either Z1 or Z2, i.e., Zt ∈ {Z1,Z2}, which
serve as candidate editing points for LAE (see Sec. V-E.1).
The frozen RL policy used in our experiments has latent
dimension d = 30.

Training uses the asynchronous version of decentralized,
independent PPO (IPPO) implemented in Sample Factory
[42], in a randomized 10 m × 10 m × 10 m simulated room
with static obstacles and goal curricula in the QuadSwarm
simulator [40]. The reward encourages goal progress and
penalizes robot–robot and robot–obstacle collisions and near-
misses together with control regularization. A key ingredient
is a collision-focused replay curriculum that buffers 1.5 s pre-
impact windows at elevated sampling rates while capping
long failure episodes, which reduces collision rates versus
baseline variants. The learned policy scaled in simulation to
32 robots at obstacle densities up to 80 percent and transfers
zero-shot for real-world deployment with Crazyflie 2.1. For

Fig. 4: Quantitative comparison of the base RL policy with and
without LAE in the non-deterministic simulator setting. We evaluate
on the same 2,600 configurations with identical start–goal and
obstacle locations as in the deterministic setting, but report averages
over 10 stochastic runs. Error bars denote 95% confidence intervals
across runs. LAE implementation uses LCWM (GRU).

more details on architecture, training setup and base-policy
performance refer to Huang et al. [2].

C. Core Results

Figure 3 presents the quantitative comparison between the
base RL policy and LCWM (GRU), our best-performing
instantiation of the LAE. The base policy incurs 5,623
collisions across the set of 2600 configurations, with no
zero collision trajectories and an average success rate of
0.58. With LCWM, collisions reduce to 583 (−89.6%), 2,175
trajectories (82.7%) are collision-free , and the average suc-
cess rate increases to 0.64 (+10.3% relative). This reduction
in collisions is statistically significant: a paired t-test over
2,600 configurations shows a mean per-run reduction of 1.94
(95% CI [1.86, 2.01]), p < 10−300, Cohen’s d = 1.0. These
results demonstrate that inference-time LAE substantially
improves safety while preserving task performance. In our
experiments, we found n = 3 to suffice, although it is task
dependent. The specific choices of Zt , horizon H, and pre-
diction horizon m follow the best-performing configurations
identified in the ablations (Sec. V-E).

While all primary evaluations in this paper are conducted
in a deterministic simulator setting to ensure fair comparisons
(Sec. V-A), we also performed a complementary test in
the non-deterministic (stochastic) setting. This evaluation
confirms that the observed improvements persist, with Fig-
ure 4 showing similar trends: LAE substantially reduces
total collisions and increases zero collision trajectories and
average success rate, with error bars (95% CI) indicating
consistent performance across 10 independent runs.

To complement these aggregate statistics, Figure 5 shows
representative trajectory comparisons. Because editing is
only triggered when unsafe states are detected, trajectories
remain identical to the base policy whenever the robots op-
erate in safe regions. When a collision is imminent, LCWM
intervenes to adjust the latent state, allowing the robots to
avoid the obstacle. Importantly, the agents still reach their
goals, showing that the safety improvements do not come at
the expense of goal-reaching behaviour.



Method Model Total Collisions ↓ Zero Collision Traj. ↑ Avg. Success Rate ↑

Base RL Policy (No Editing) – 5,623 0 0.58

KD-Tree Retrieval – 2,678 1,307 0.61

Sparse Autoencoders (SAE) – 2,896 1,320 0.62

Encoder–Decoder Projections
UMAP 3,766 491 0.59
Barlow-Twins 3,355 919 0.61
AE 37,749 215 0.59

Latent Collision World Model (LCWM) Transformer 612 2,062 0.63
GRU 583 2,175 0.64

TABLE I: Comparison of alternative editing strategies on 2600 diverse environment configurations. LCWM (GRU) achieves fewest
collisions and the most zero collision trajectories while maintaining success rate. Other approaches offer partial gains but are less effective.

Fig. 5: Representative trajectory comparison. Left: base RL policy
(no LAE), which collides with obstacles. Right: RL policy with
LAE, which avoids collisions while remaining identical to the base
policy in safe regions and still reaching the goals. Trajectories are
coloured by speed. Numbers denote quadrotor index.

D. Comparative Evaluation

We next compare LCWM against a range of alternative
baseline LAE strategies. For each baseline, we conducted
reasonable hyperparameter sweeps and report the best-
performing setting we identified. While we do not claim
these are globally optimal, weaker configurations performed
substantially worse, and we found no settings that altered
the qualitative trends reported here. The complete results are
summarized in Table I, and we briefly discuss the motivation,
design, and outcomes of each method.

1) KD-Tree Retrieval: As a non-parametric test of our
LAE hypothesis for safer behavior, we built KD-trees over
latent activations indexed by time-to-collision and used them
to replace unsafe latents activations with their nearest neigh-
bors drawn from trajectories leading up to a crash. This
serves as a dataset-driven approximation of LCWM, rather
than predicting future unsafe latents with a model, it simply
recalls them from a dictionary of previously observed unsafe
progressions. KD-tree retrieval reduces collisions compared
to the base policy (2,678 vs. 5,623), showing that even simple
memorization of unsafe evolution provides some benefit.
However, its reliance on stored examples prevents it from
generalizing to unseen states, leaving it well behind the
learned LCWM (583 total collisions).

2) Sparse Autoencoders (SAE): SAE have become popu-
lar in AI safety [13, 31], where they decompose activations
into interpretable units that can be selectively modulated.
Following this idea, we trained SAEs on unsafe latents to

identify neurons correlated with unsafe behavior and applied
standard steering interventions on these units [13, 31]. While
this improved safety relative to the base policy (2,896 vs.
5,623 collisions), it remained way less effective than LCWM.
A key limitation is that in robotics, unsafe behaviour is
distributed across entangled latent dimensions, and may
not be cleanly separable into individual sparse units as
sometimes observed in LLMs or vision models. As a result,
SAE performance was highly sensitive to hyperparameters
such as such as dictionary size, sparsity penalty (λ ), and the
choice of units targeted for editing. This fragility manifested
in large performance variance, with some configurations
yielding modest gains while others produced unstable or
infeasible behaviour. One likely contributor is that some of
the units selected for steering also encode aspects of robot’s
own dynamics; modifying them can disrupt the underlying
stability of the controller and lead to catastrophic behaviour
(Sec. V-E.1). Overall, SAEs demanded extensive tuning yet
consistently underperformed the LCWM approach, highlight-
ing their limited suitability.

3) Encoder–Decoder Projections: We next explored
whether projecting latents into a lower-dimensional represen-
tation could act as a form of editing by implicitly mapping
unsafe states closer to the manifold of safe activations.
We tested parametric UMAP (structure-preserving) [43],
Barlow Twins (self-supervised disentanglement) [44], and a
standard autoencoder. UMAP (3,766 collisions) and Barlow
Twins (3,355 collisions) provided modest improvements, but
the autoencoder collapsed completely (37,749 collisions).
Overall, these results indicate that while encoder–decoder
projections reshape the representation space, compression
alone is insufficient for effectively reducing unsafe behavior.

4) Latent Collision World Model Variants: The LCWM
can be instantiated using different temporal latent predictors,
but the input output structure and underlying hypothesis
remain the same. We evaluate two widely used temporal
architectures: GRUs, a popular and lightweight variant of
recurrent neural networks (RNNs), and transformers. The
GRU-based LCWM achieved the best overall performance
(583 collisions, 2,175 zero-collision episodes), reflecting the
suitability of recurrent models for short horizons under tight
compute budgets. A Transformer-based LCWM achieved
comparable safety (612 collisions) but incurred substantially
higher computational cost, limiting its practicality for real-



Fig. 6: Choice of Zt : Comparing Z1
All , Z2

All , and Z1
Partial . Z1

Partial
offers the best safety–performance trade-off.

time deployment on Crazyflie hardware. These results high-
light that while both architectures can realize the LCWM
hypothesis, lightweight RNN such as GRUs provide the best
balance of effectiveness and efficiency in our setting.

In summary, while alternative strategies offer partial gains,
only LCWM consistently delivered strong safety improve-
ments at a feasible computational cost.

E. Ablation Studies

1) Which Latent to Edit?: Since LAE operates by mod-
ifying an intermediate latent activation Zt , the choice of
Zt is critical and a key design question. As described in
Sec. V-B, we consider two candidate latents: Z1, the fused
latent obtained by concatenating the self embedding with
the attention-modulated neighbor and obstacle embeddings,
and Z2, a downstream latent before the action head. We
evaluate three editing strategies: (i) Z1

All : editing the entire Z1

latent activation, (ii) Z1
Partial : editing only the neighbor and

obstacle components of Z1 while leaving the self-dynamics
components untouched, and (iii) Z2

All : editing the entire Z2

latent activation. The rationale for Z1
Partial is that Z1 retains

a clean separation between self-dynamics and environment
features, making selective editing possible. In contrast, Z2

has already passed through a feedforward transformation and
nonlinearity, which entangles these features and prevents a
comparable split. As shown in Figure 6, restricting edits to
Z1

Partial yields the best results, reducing collisions to 583,
producing 2,175 zero-collision episodes, and raising success
to 0.64. In contrast, editing the entire Z1 (Z1

All) leads to unsafe
and dynamically infeasible trajectories, with performance
degrading to 67,951 collisions and only 128 zero-collision
episodes. An even stronger failure mode occurs when editing
the downstream latent activation Z2 (Z2

All), the subsequent
hidden layer after a feedforward transformation and non-
linearity. These results establish a clear guideline: effective
latent editing must preserve neurons carrying self–dynamics
information, as indiscriminate modification of robot’s own
dynamics can produce unsafe or infeasible behavior.

2) Effect of Editing Horizon H: The classifier horizon
H determines how many steps before a collision are la-
beled as unsafe and thus trigger editing. Figure 7 shows
a clear trend. Short horizons (H=50) intervene too late,
leaving many collisions unresolved (1,124 total). Increasing
to H=100 reduces collisions substantially (714 total). For
H ∈ [150,300], the safety and success metrics stabilize

Fig. 7: Effect of editing horizon H for LAE with LCWM (GRU).

with only marginal changes, with H=250 offering the best
overall trade-off (lowest collisions at comparable and highest
success rate), whereas H=300 shows a slight increase in
collisions. Concretely, total cumulative collisions drop from
1124 at H=50 to 583 at H=250 and total zero collision
trajectories increase from 1755 at H=50 to 2175 at H=250
with a success rate of 0.64. We therefore adopt H=250 as
the default value. These results confirm that the timing of
editing is an essential hyperparameter: even with the same
model, choosing H incorrectly can limit effectiveness, and
the optimal value will depend on the behavior being edited.

Fig. 8: Choice of prediction horizon m for LCWM.

3) Choice of Prediction Horizon m: The LCWM operates
by predicting future latent activations over a fixed prediction
horizon m, which specifies how many steps into the future
the model predicts. A sufficient lookahead is required to
realize our safety hypothesis: by anticipating the near-future
evolution of unsafe states, the LCWM can amplify collision-
related activations and provide the inflated risk signal needed
to trigger earlier avoidance. However, predicting too far
ahead risks departing from the policy’s latent dynamics,
leading to unreliable or destabilizing edits.

Figure 8 shows the effect of varying m ∈
{5,10,15,20,25,30}. Among the tested values, m=10
yields the best overall performance, with 583 total
collisions, 2,175 zero-collision trajectories, and an average
success rate of 0.64. A shorter horizon such as m=5 also
improves performance (1,931 zero-collision trajectories,
success rate 0.63), but longer horizons degrade results
consistently: starting at m=15 collisions increase and
success decreases, with the effect becoming pronounced at
m≥ 25 (e.g., 60,547 collisions at m=30).



Fig. 9: Real-world deployment with 4 Crazyflie quadrotors navigating among cylindrical obstacles (bilateral crossing). Left: with the
baseline RL policy, Drone 1 collides with an obstacle, leading to task failure. Right: with LAE enabled, all drones avoid collisions and
reach their goals.

Fig. 10: Real-world deployment with 4 Crazyflie quadrotors navigating among cylindrical obstacles (four-way crossing). Left: with the
baseline RL policy, Drones 1, 2, and 4 collide with obstacles, leading to task failure. Right: with LAE enabled, all drones avoid collisions
and reach their goals.

These results indicate that the prediction horizon m is a
critical hyperparameter: very short horizons limit foresight,
while overly long horizons destabilize predictions. A moder-
ate setting around m=10 provides the most favorable trade-
off, and we adopt it as the default in for all experiments.

F. Real-World Deployment

To validate whether LAE remains effective beyond simula-
tion, we deploy the RL policy together with our LAE module
(trained exclusively in simulation) on multiple Crazyflie 2.1
quadrotors. The LAE module consists of a compact two-
layer MLP classifier with 64 hidden size (∼2k parameters)
and a lightweight GRU editor with hidden size 32 (∼7k
parameters), both re-implemented in C for real-time exe-
cution on the Crazyflie’s STM32 microcontroller. Together,
these networks contain fewer than 10k parameters (under
40 kB in float32) and add less than 1 ms latency per step,
making them fully compatible with the 1 kHz stabilization
loop and demonstrating the feasibility of LAE on a severely
resource-constrained platform. Each quadrotor performs on-
board localization through optical flow and broadcasts its
estimated state to neighbors over a low-latency radio link.
Obstacles are known a priori, from which a local SDF (2m

range) is generated online. All computation, including state
estimation, inter-quadrotor communication, LAE, and policy
inference, runs fully onboard at 100 hz.

The quadrotors are deployed in an indoor environment
with cylindrical obstacles, using identical start and goal
positions across trials to ensure fair comparison. We first
illustrate the LAE mechanism on a single quadrotor (Figure 1
b). The baseline RL policy collides with an obstacle, whereas
with LAE the trajectory remains identical to the base policy
until the first unsafe state is flagged; from that point onward,
successive latent edits steer the quadrotor away from the
unsafe zone while still reaching the goal safely. We then
demonstrate scalability in multi-agent settings. In the 4-
quadrotor bilateral crossing task (Figure 9), the baseline
RL policy produces collisions, whereas the LAE-augmented
policy consistently steers the robots safely around obstacles
while still reaching their goals. Additional experiments (Fig-
ure 10) validate robustness in a more challenging four-way
crossing setup, where quadrotors approach from all sides
of the arena and must swap positions without collision.
Across both scenarios, our LAE framework preserves the
base policy’s goal-reaching performance while significantly
reducing collisions. These results confirm that inference-



time LAE is not only effective in large-scale simulation
but also deployable as a practical, real-time safety layer for
multi-quadrotor navigation on severely resource-constrained
hardware.

VI. CONCLUSION

We introduce LAE, an inference-time framework for re-
fining the behavior of pre-trained policies without retraining
or architectural modifications. Focusing on multi-quadrotor
navigation, we show that LAE substantially reduces colli-
sions by intervening directly in intermediate latent repre-
sentations. We hypothesize that amplifying collision-related
activations induces more cautious maneuvers and instantiate
this idea through an LCWM that predicts and replaces unsafe
activations. Across large-scale simulations and real-world
Crazyflie deployments, LAE yields statistically significant
reductions in collisions while preserving task performance,
establishing activation editing as a lightweight, effective, and
practically feasible paradigm for post-deployment refinement
of robotic control policies toward safer behavior.

While we instantiate LAE for reducing collisions for
multi-quadrotor navigation, the framework is not inherently
limited to this setting. In future work, we plan to extend the
approach to other behavioral axes, different platforms, and
varied task domains.
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