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Abstract. Robot swarms can effectively serve a variety of sensing and
inspection applications. Certain inspection tasks require a binary classi-
fication decision. This work presents an experimental setup for a surface
inspection task based on vibration sensing and studies a Bayesian two-
outcome decision-making algorithm in a swarm of miniaturized wheeled
robots. The robots are tasked with individually inspecting and collec-
tively classifying a 1m × 1m tiled surface consisting of vibrating and
non-vibrating tiles based on the majority type of tiles. The robots sense
vibrations using onboard IMUs and perform collision avoidance using a
set of IR sensors. We develop a simulation and optimization framework
leveraging the Webots robotic simulator and a Particle Swarm Opti-
mization (PSO) method. We consider two existing information sharing
strategies and propose a new one that allows the swarm to rapidly reach
accurate classification decisions. We first find optimal parameters that
allow efficient sampling in simulation and then evaluate our proposed
strategy against the two existing ones using 100 randomized simulation
and 10 real experiments. We find that our proposed method compels the
swarm to make decisions at an accelerated rate, with an improvement of
up to 20.52% in mean decision time at only 0.78% loss in accuracy.

Keywords: Vibration sensing · Collective decision-making · Inspection.

1 Introduction

Over the last few decades, automated inspection systems have increasingly be-
come a valuable tool across various industries [6,22,23,5]. Studies have addressed
applications in agricultural and hull inspection as well as infrastructure and
wind-turbine maintenance [7,18,17,15]. Vibration analysis is a valuable tool in
these inspection processes. Different types of vibration analysis are used to de-
tect the condition of infrastructure through structural properties such as modal
shapes and eigenfrequencies [2,19,10]. Certain inspection processes incorporate
regression analysis, while other require making a binary classification decision
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[24]. A class of inspection tasks involves making a binary decision about a spa-
tially distributed feature of the inspected system. This type of decisions can be
effectively addressed by a swarm of robots. Swarms improve the decision time
and accuracy of by leveraging collective perception [26,27]. Moreover, swarms
eliminate the problem of sensor-placement and can provide a high-resolution
map of the environment [3,4]. Collective decision-making algorithms often draw
inspiration from nature, such as groups of ants and bees [25]. A more math-
ematical approach is found in Bayesian algorithms. Applications of Bayesian
algorithms have been studied in sensor networks [1,20] as well as robot swarms
[26,12,27,11,14]. In the study outlined in [11], a collective of agents must deter-
mine whether the predominant color of a checkered pattern is black or white.
The robots function as Bayesian modellers, exchanging information based on
two information sharing strategies. The robots either (i) continuously broadcast
their ongoing binary observations (no feedback strategy) or (ii) continuously
broadcast their irreversible decisions once reached (positive feedback strategy).

In this work, we build on top of the work in [11] in three ways. First, we
move away from the agent-based simulation and present a real experimental
setup built around 3-cm-sized vibration sensing wheeled robots and utilize vi-
bration signals in the presence of measurement noise in place of simulated binary
floor color observations. We develop a new sensor board to allow the robots to
perform collision avoidance. Second, we develop a simulation framework in the
physics-based robotic simulator Webots and employ a Particle Swarm Opti-
mization (PSO) method to heuristically optimize the sampling behavior of the
swarm across our experimental setup, similar to [8]. We show calibration of our
simulation world against our real experimental setup. Third, we present a new
information sharing strategy, termed soft-feedback, leveraging the stability of no
feedback and coercion of positive feedback strategies. The advantages lie in its
ability to drive the swarm towards consensus, particularly in difficult to classify
and noisy environments. We use simulation and experimental studies to eval-
uate the swarm’s performance for all three information sharing strategies and
consider decision time and accuracy as metrics in our assessments.

2 Problem Definition

We task a swarm of N robots to individually inspect and collectively classify
a 2D tiled surface section. The surface comprises two types of tiles, vibrating
and non-vibrating tiles. The swarm must determine whether the tiled surface is
majority vibrating or majority non-vibrating. We denote the fill-ratio f as the
proportion of vibrating tiles. The robots each individually inspect the surface,
share their information with the rest of the swarm, and collectively classify the
surface. The inspection task ends when every robot in the swarm reaches a
final decision, determining if the fill-ratio is above or below 0.5. An underlying
real-world scenario could involve inspecting a surface section and determining
whether the surface is in a majority healthy or in a majority unhealthy state.
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(a) Overall experimental setup. (b) View from overhead camera.

Fig. 1: The experimental setup with a fill ratio of f = 12
25 = 0.48. (a) Schematic

overview of the setup is shown. The central PC uses the radio and camera data
for analysis. Vibration-motors are attached on the bottom side of white tiles. (b)
A snapshot from the overhead camera with detailed view (black square). The
red dots indicate vibrating tiles. Each robot carries a unique AruCo marker for
tracking. AruCo markers in the corners of the environment mark the boundaries.

3 Real Experimental Setup

Our experimental setup, shown in Figure 1, is built around (i) a tiled surface
section of size 1m×1m, and (ii) a swarm of 3cm-sized vibration-sensing wheeled
robots that traverse and inspect the tiled surface section. The surface section
consists of 25 tiles, each of size 20cm× 20cm, that are laid out in a square grid
with five tiles on each side. There are two types of tiles on the surface, vibrating
and non-vibrating tiles. The vibrating tiles are excited using two miniature vi-
bration motors mounted on top of one another underneath the tile at its center
(ERM 3V Seeed Technology motors). All tiles are secured to an aluminium frame using
2cm×1cm pieces of magnetic tape around the corners. The frame consists of four strut
profiles in the middle and four others along the edges of the arena. We use an overhead
camera (Logitech BRIO 4k) and AruCo markers for visual tracking of the robots.

We use a revised and extended version of the Rovable robot originally presented
in [9]. As shown in Figure 2, each robot measures 25mm× 33mm× 35mm and carries
two customized Printed Circuit Boards (PCBs): (i) a main PCB hosting the micro-
controller, an IMU, motor controllers, power circuitry and radio and (ii) an extension
PCB hosting IR sensors for collision avoidance. The main PCB has essentially the same
design as the one in [9], and was only revised and remade for updated components. The
extension PCB is new and hosts three small Time-of-Flight (ToF) IR sensor boards,
each facing a direction of 0

◦
, 25

◦
, and −25

◦
relative to the forward driving direction

of the robot. Each sensor has a field of view of 27
◦

and a range of up to 1m. A 3D
printed shield is mounted around the extension PCB to enhance the visibility of the
robot when perceived by the IR sensors of other robots. The robot has four magnetic
wheels. Only two wheels, one on the front and one on the back, are driven by PWM
operated motors. At 100% PWM, the robot drives forward at around 5cm per second.
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(a) Extended robot (b) 3D CAD view
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(c) Schematics view

Fig. 2: We use a revised and extended version of the original Rovable robot [9].
(a) The extended robot with IR sensor board. (b) Exploded 3D CAD view of the
extended robot. (c) Electronic block diagram of the extended robot. The micro-
controller (Atmel SAMD21G18) interfaces with the IMU (MPU6050), 2.4 GHz ra-
dio (nRF24L01+), motor-controllers (DRV8835), and ToF IR sensors (VL53L1X).

(a) Simulation, front (b) Simulation, top
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(c) Real robot, front
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]

(d) Real robot, top

Fig. 3: We use a simpler robot model in simulation, with IR sensors directly sim-
ulated on the main PCB. Simulated collision avoidance closely matches reality.

4 Simulation and Optimization Framework

Our simulation framework provides a virtual environment where we can study the
operation of our robot swarm. The ease and speed of launching simulations enables
optimization. Within Webots, we set up two main components: (i) a realistic model
of our 3cm wheeled robot, and (ii) a tiled surface that the robots inspect, with a
black and white projected floor pattern. We use the black and white tiles in simulation
as a proxy for vibrating and non-vibrating tiles in our real experimental setup. In
simulation, we assume noise-free binary sampling of the surface and zero loss on inter-
robot communication. Figure 3 shows the simulated and the real robots side by side. In
simulation, the ToF sensor board is absent, but simulated IR sensors retain comparable
range and positioning. We recreate mechanical differences that exist between real robots
by adding randomized offsets to the simulated left and right motor speed commands:

Ms
l ←Ms

l rv(1− ra) (1a)

Ms
r ←Ms

r rv(1 + ra) (1b)
where Ms

l and Ms
r are the left and right motor speeds, and rv and ra are drawn from

empirically chosen uniform distributions U ∼ (0.95, 1.05) and U ∼ (−0.125, 0.125),
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Fig. 4: Distribution of samples across tiles in real (a) and simulated (c) setups.
The displacement between consecutive samples in real (b) and simulated (d)
setups. Time lapsed between consecutive samples in both setups is shown in (e).

respectively, to account for variations in motor speed and alignment. We calibrate
our simulation empirically considering three characteristic features: (i) sample dis-
tribution over the experimental setup, (ii) time between consecutive samples, and
(iii) distance between consecutive samples. To obtain data for our calibrations, we
run experiments using five robots for 3 × 20 minutes with algorithm parameters
[γ, γ0, τ, θc] = [5000, 2000, 1500, 60] using the u− information sharing strategy (see Sec-
tion 5). The Pearson correlation coefficients for the obtained data shown in Figure 4
corresponding to the three features mentioned above are calculated as 0.990, 0.984,
and 0.735, respectively. These values confirm the similarity between simulated and real
swarm behaviors, enabling optimizing real experiments using simulation.

Our optimization framework involves two components: (i) our calibrated simulation
and (ii) a noise-resistant PSO method. Throughout the PSO iterations, every particle
is evaluated multiple times on randomized floor patterns with the same fill-ratio. The
velocity and position of particle i are updated at iteration k as:

vk+1
i = ω · vk

i + ωp · r1(pbi − pk
i ) + ωg · r2(gb − pk

i ) (2a)

pk+1
i = pk

i + vk+1
i (2b)

where vk
i and pk

i are the velocity and position vector of particle i at iteration k. pbi and
gb correspond to the position vector of the personal best and global best evaluations
for particle i, respectively. We set the PSO weights for inertia, personal best, and global
best as [ω ωp ωg] = [0.75 1.5 1.5], balancing local and global exploration [21,13,16].
The values r1 and r2 are drawn from a uniform distribution U ∼ (0, 1) each iteration.
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5 Inspection Algorithm

Algorithm 1 shows the collective Bayesian decision making algorithm that we study.
The robots individually estimate and classify the fill ratio f as above or below 0.5. Each
robot acts as a Bayesian modeler integrating personal observations and information
broadcast by other robots. The content of this shared information depends on the
swarm’s information sharing strategy. We consider three strategies: (i) the no feedback
(u−) and (ii) the positive feedback (u+) strategies, which were previously studied in
[11], and (iii) the soft feedback (us) strategy, which we propose as a new approach.

The robots make binary observations of the surface condition as black/white in
simulation or vibrating/non-vibrating in the real setup which we model as O ∈ {0, 1}:

O ∼ Bernoulli(f) (3)

The fill ratio f ∈ [0, 1] is unknown to the robots and is modeled by a Beta-distribution:

f ∼ Beta(α, β) (4)

The prior distribution of f is initialized as Beta(α0 = 1, β0 = 1). Upon sampling or
receiving observations from other robots, the posterior distribution of f is updated as:

f | O ∼ Beta(α+O, β + (1−O)) (5)

The robots perform a Levy-flight type random walk, moving forward for a time drawn
from a Cauchy distribution with mean γ0 and average absolute deviation γ followed by
turning a uniform random angle ϕ ∼ U(−π, π) in the direction of sign(ϕ) relative to
the forward driving direction. The robots perform collision avoidance upon detecting
an obstacle within a range of θc millimeters, by turning a random angle ϕ ∼ U(−π, π)
in the direction of sign(ϕ) relative to the forward driving direction.

Every τ milliseconds a robot samples a new observation O. In simulation, O is
based on a binary floor color sampling. In experiments, O is calculated using a 500
millisecond vibration signal sample. The DC component of this sample is removed by
employing a first-order high-pass filter with cutoff frequency ωn = 40 Hz. Given a
sampling rate of 350 Hz, the filter parameters α1, α2, and α3 are configured to values:
0.20, 0.60, and −0.60 respectively. We define the filtered signal at time step i as âi:

âi := α1âi−1 + α2ai + α3ai−1 (6)

where ai is the magnitude of the IMU’s raw acceleration data ax, ay, and az. The

Root-Mean-Square (RMS) of â returns the energy of the signal as Ê =
√

1
n

∑n
i=1 â

2
i .

Subsequently, the observation O is determined by comparing Ê with a threshold θE :

O =

{
1 if Ê > θE

0 if Ê ≤ θE
(7)

Depending on the information sharing strategy, the robots broadcast either (i) the
latest observation O, in the case of no feedback (u−), (ii) the latest observation O before
reaching a final decision, and after that their final decision df , in the case of positive
feedback (u+), or (iii) a binary value calculated through the soft-feedback method (us)
as a Bernoulli sample with a probability determined by the soft feedback parameter
η ∈ R+, the current observation O ∈ {0, 1}, and the current belief p ∈ [0, 1] as below:

m ∼ Bernoulli (δ · (1− p) + (1− δ) ·O) (8a)
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Algorithm 1 Collective Bayesian Decision Making

Inputs: u−, u+, us, Tend, θo, η, θc, τ, pc
Initialize: α = 1, β = 1, df = −1, robot id, ts = 0
while t < Tend do

Perform random walk for τ time
if t− ts > τ then

O ← Observation ▷ Get binary observation
ts ← t ▷ Observation timestamp
Beta(α, β)← Beta(α+O, β + (1−O)) ▷ Update modeling of f
p← P (Beta(α, β) < 0.5) ▷ Update belief on f
Ocount ← Ocount + 1 ▷ Observation count

end if
if (us Or df == −1) And (Ocount > θo) then

if p > pc then
df ← 0

else if (1− p) > pc then
df ← 1

end if
end if
if us then

Γ ← Var(Beta)
m← Bernoulli

(
(1− p)e−ηΓ ( 1

2
− p)2 +O(1− e−ηΓ ( 1

2
− p)2)

)
Broadcast(m) ▷ Soft feedback

else if (u+ And df ̸= −1) then
Broadcast(df ) ▷ Positive feedback

else
Broadcast(O) ▷ No feedback

end if
if Message in queue then

O ← Message ▷ Receive message from swarm
Beta(α, β)← Beta(α+O, β + (1−O)) ▷ Update modeling of f

end if
end while

δ = e−ηΓ (
1

2
− p)2 (8b)

p = P (Beta(α, β) < 0.5) (8c)

where m is the outgoing message, Γ is the variance of the Beta distribution and p is the
robot’s belief evaluated as the CDF of the Beta distribution at f = 0.5. Equation 8b
depends on (i) a compelling component e−ηΓ ∈ [0, 1] which increases the proportion of
the current belief in messages as Γ decreases, and (ii) a stabilizing component ( 1

2
−p)2 ∈

[0, 0.25] which is the squared distance of p from the indecisive state p = 0.5, increasing
the proportion of robot’s belief in the Bernoulli sampled message to enhance accuracy.

Upon reaching a minimum of θo number of observations, a robot considers making
a final decision based on its belief p. If above the credibility threshold pc, the robot’s
final decision df is set to 0. Conversely, if (1 − p) > pc, this final decision is set to 1.
The inspection task ends when all robots have made a final decision.
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6 Experiments and Results

We use a swarm of five robots, all employing pc = 0.95, and floor patterns with a fill
ratio of f = 0.48 to conduct simulation and real experiments. We evaluate on decision
time and accuracy for the strategies u−, u+, and us. We consider decision time as the
time the last robot that makes a final decision. We average the beliefs (Equation 8c)
of the robots at this decision time to calculate a corresponding decision accuracy.

6.1 Simulation Experiments

Five algorithmic parameters determine the sampling behavior of the swarm. These
include mean (γ0) and mean absolute deviation (γ) of the Cauchy distribution char-
acterizing the robots’ random walk, the sampling interval (τ), the collision avoidance
threshold (θc), and the observations threshold (θo). Table 1 lists the boundaries of
our optimization search space. The lower bounds for τ and θc are set to allow smooth
pause-sample-move and collision avoidance maneuvers. The bounds on γ and γ0 are set
such that a robot is able to cross the arena in one random walk step. The bounds on the
observation threshold θo are established empirically. The particles in the PSO swarm
are initialized randomly within the bounded search space, with the exception of one
particle P0 set to an empirically chosen location. Each particle is evaluated multiple
times to mitigate randomness. For a particle i, we define the performance cost Ci as:

Ci = µ
([

c1 c2 . . . cNe

]⊤)
+ 1.1 · σ

([
c1 c2 . . . cNe

]⊤) (9)

where Ne is the number of re-evaluations and cj is the outcome of the evaluation j:

ϵi(t, df ) =


ϵf · t/Tend df = d∗f

ϵf · ϵd df ̸= d∗f

ϵf df = −1
(10a)

cj =

Nr∑
i=1

ϵi (10b)

where Nr = 5 is the number of robots, ϵi is the performance cost of robot i for which
the robot’s final decision df made at time t is compared with the correct decision d∗f .
A wrong decision is penalized by a factor of ϵd = 5. The value ϵf = 1 + |f − f∗|/ϵt
is calculated using the absolute difference between a robot’s current estimate of the
fill ratio f = α/(α + β) and the correct fill ratio f∗, divided by a normalizing factor
ϵt = 0.04 that corresponds to the contribution of one tile in the overall 25-tile setup.

Parameter γ0[ms] γ[ms] τ [ms] θc[mm] θo
P0 2000 5000 2000 60 50
mini 2000 0 1000 50 50
maxi 15000 15000 3000 100 200
P ∗ 7565 15000 2025 50 85

Table 1: The PSO optimization parameters and bounds. P0 is the empirical best
guess particle. P ∗ is the resulting best particle with respect to our cost-function.
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Fig. 5: We use 30 particles, each re-evaluated 16 times, over 50 iterations using
Equation 9. (a) Progression of cost performance of each particle (Ci), personal
best cost performance of each particle (C∗

i ), and the global best cost performance
(C∗). (b) Progression of mean and standard deviation of parameters in Table 1.

To find the optimal parameters for our inspection algorithm, we first consider run-
ning the algorithm with the u− information sharing strategy through our optimization
framework. Our intuition is that an optimal parameter set for u− should allow the
swarm to obtain a well-representative sample of the environment in a time-efficient
manner, thus, the same parameters should also perform optimally for u+ and us. Us-
ing this parameter set, we then run a systematic search to find an optimal value for
the soft feedback parameter η that characterizes the us information sharing strategy.

We consider the u− strategy first. For the PSO optimizations, we use 30 particles,
50 iterations, and 16 re-evaluations. Each particle is evaluated for Tend = 1200s or until
all robots in the swarm have reached a decision. The optimization results are shown
in Figure 5. It can be seen that the average personal best performance of the particles
converges to the performance of the global best particle P ∗, which is listed in Table 1.

Using P ∗, we then run a systematic search for the soft-feedback parameter η. We
consider five candidate values for η based on prior empirical tests and run 100 ran-
domized simulations to evaluate the performance of us against u− and u+. Figure 6
illustrates the results. We see that us consistently outperforms u− and u+ in deci-
sion time. Regarding accuracy, us closely approaches the performance of u+ and u−

at η = 1000. Specifically, for η = 1000, the us achieves a 20.52% reduction in mean
decision time at a 0.78% loss in accuracy, compared with u+. When compared with u−,
us achieves a reduction of 22.10% in mean decision time at a 1.22% loss in accuracy.

To assess the generalizability of our findings, we run 100 randomized simulations
across fill-ratios of f ∈ [0.44, 0.48, 0.52, 0.56] to compare u−, u+ and us (with η = 1000)
based on decision time and accuracy. Each simulation ends upon reaching Tend or when
all robots have reached a decision. For a fair comparison, we fix the random seeds used
to generate floor patterns across the simulation instances. Figure 6c shows that us

outperforms the other two strategies in decision time. Due incorporating beliefs in the
shared information, the swarm is compelled to make a decision rapidly, reducing mean
and variation in decision times. This is particularly beneficial in harder environments
where the fill ratio is close to f = 0.5, facilitating reaching the credibility threshold pc.
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Fig. 6: Decision time (a) and decision accuracy values (b) of 100 randomized
simulation experiments using systematic search for the soft-feedback parameter
η of us, compared against u− and u+. Using η = 1000 we run 100 randomized
simulations for different f ∈ [0.44, 0.48, 0.52, 0.56] and compare with u− and u+.
The resulting decision times and accuracies are shown in (c) and (d), respectively.

6.2 Real Experiments

We validate our simulation results by real experiments in 10 trials for u−, u+, and us.
We first tune the sample threshold θE using data from one hour of swarm operation
employing u− and algorithm parameters [γ, γ0, τ, θc] = [5000, 2000, 1000, 60], gathering
a total of 6975 samples. Our evaluation criteria are the number of false observations and
the fill-ratio error |f − f∗|. Figure 7 shows that we obtain |f − f∗| ≈ 0 at θE = 1.55.
Employing θE = 1.55 results in an equal amount of False Positives (FP) and False
Negatives (FN), balancing the modeling error on the Beta distribution. Furthermore,
we note that false observations appear mostly along edges of the tiles. This is expected
as the robots may sample close to the tile edges while in contact with two tiles.

We conduct 10 experimental trials on our experimental setup with f∗ = 0.48 for
assessing u−, u+ and us. The real experiments confirm our findings in simulation and
reveal that the utilization of us notably decreases the swarm’s decision time. Employing
us compels the swarm to reach decisions at an accelerated rate compared to u+ and
u−. The decision time and accuracy data from real experiments is shown in Figure 8.
We can see that us demonstrates inherently less variance in decision times. Moreover,
we encounter fewer indecisive trial outcomes compared to u+ and u−.
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Ê

(d) FNs in arena

Fig. 7: The threshold parameter θE determines binary observations of vibration
data in real experiments (see Equation 7). (a) The fill ratio error |f − f∗| for
different values of θE (0.025 grid). (b) False observations for different values of
θE (c) Spatial distribution of false positive and (d) false negative observations.
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Fig. 8: Decision time and accuracy in real experiments with a fill-ratio of f =
0.48. If no decision is made within t = Tend, we refer to 1200 for decision time
and the corresponding belief for accuracy. We see that us is faster and equally
accurate as u− and u+ in real experiments, confirming our simulation results.

7 Conclusion and Future Work

In this work, we presented an experimental setup for studying a surface inspection
task using a swarm of vibration sensing robots and explored the application of a
Bayesian decision-making algorithm. We developed a simulation framework leveraging
the physics based Webots robotic simulator and a PSO method to optimize the parame-
ters shaping the robots’ sampling performance. The resulting optimal parameter values
were assessed for three information sharing strategies in randomized simulations across
different environments based on the swarm’s decision time and accuracy. We observed
that our proposed soft feedback strategy yields a significant decrease in decision time
without a major compromise in decision accuracy, compared to two previously studied
strategies. Furthermore, hardware experimental trials validated our simulation findings.
In real experiments, no drop in the decision accuracy was observed, demonstrating the
adaptability and robustness of the decision-making processes to noise. In our future
work, we plan to increase the complexity of our experiments in several ways, considering
(i) performing inspection of complex structures such as 3D surfaces or obstacle-dense
environments, (ii) classifying time-varying fill-ratios on our experimental setup, and
(iii) studying the effect of the swarm size on the inspection performance.
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